DYNAMIC STABILIZATION OF THIN PLASMA FILAMENTS

M. G. Nikulin

The Routh function is found for a fine plasma filament (toroidal and rectilinear), experienc-
ing smooth long-wave hosepipe and constrictive perturbations in the case in which the ex~
ternal magnetic field is a combination of quadrupole and longitudinal fields. Different var-
iants of dynamic stabilization of a filament are briefly discussed. Combined dynamic
stabilization of a straight filament with an alternating current by means of constant quad-
rupole and longitudinal fields is investigated by averaging with respect to rapid oscilla-
tions.

In [1,2] a method was developed for investigating the stability of fine plasma filaments relative to
long-wave hosepipe and constrictive perturbations. The method was based on the fact that a plasma fila-
ment carrying a current can be treated as an electromechanical system for
w . which the Routh function can be calculated, thus making it possible for the

A q’;% equation of motion to be obtained for the filament close to the equilibrium posi-
tion. This method turns out to be particularly effective for solving problems of
the dynamic stabilization of plasma filaments by quasi-stationary high-fre-

A 2 quency magnetic fields. It was shown in [2] that the Routh function R for systems
of this type can be written in the following form:
/ R=T-Ww (0.1)
0.08 IT;
/ L~ Here T is the kinetic and W the generalized potential energy, which is
equal to the sum of the internal U and magnetic self-energy Wy, of the system
a.04 / — W=U4+ Wn. 0.2)
M\ If the expressions for T and W are known, the potential energy averaged
28 N over the high-frequency oscillations of the motion can easily be obtained as a
g 72 2" quadratic form with constant coefficients, and this can be investigated without
Fig. 1 difficulty. Using the method of averaging we can immediately evaluate this or

that variant of dynamic stabilization. If resonance phenomena characteristic
for systems with periodically varying parameters have to be investigated, the equations of motion ob~
tainable with the help of the Routh function can be treated directly.

In the present paper we find the magnetic self-energy Wy, of a thin circular ring of plasma experi-
encing smooth long-wave constrictive and hosepipe perturbations for the case in which the external mag-
netic field is a combination of quadrupole and longitudinal fields. In addition to the mechanical Lagrangian
(L = T—1), calculated in paper [1], the magnetic self-energy Wy gives us the Routh function

=L — Wp. (0.3)

The instantaneous Routhian for an infinite straight filament is found by passing to the limit. The re-
sults obtained are used for a brief discussion of familiar methods of stabilizing kinks in a plasma fila-
ment: the use of quadrupole and longitudinal magnetic fields; the combined action of these fields on a
straight filament carrying a high-frequency alternating current is also investigated (by the method of
averaging).
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1. Let us consider a thin circular plasma ring whose the smaller radius is
A [ a and whose larger radius is b, b > a. The plasma is assumed to be ideally con-
ducting, incompressible and nonviscous. The ring is situated in an external mag-
netic field having longitudinal and transverse components relative to the filament,
The basic transverse field excites a longitudinal current in the ring and serves to
- stabilize the ring relative to its larger radius. In the neighborhood of the plasma
"Q* filament there is also an additional transverse field having a quadrupole struc-

ﬁ{ ture, which stabilizes the filament with respect to hosepipe perturbations. The
AN magnetic fields and the currents which they induce may have high-frequency

“ /L » \\? components. :
: ) o Let us describe perturbations of the ring by the functions &(¢,t), 6(¢,t),
12 ' . and o (@,t) which are small compared with unity:
| [ i o0k <1, 1)
i I / / . These enable the equations for the axial line and the smaller radius of the ring to
2z ay be written in the form
(e, 1) = bld + &g, O], (9, 1) = bd(p, 1), a-(, ) =dll +alp, 1)]. (1.2)

Here r, ¢, and z are cylindrical coordinates of the axial line of the fila~
ment, a., is the variable radius of transverse cross section, perpendicular to the perturbed axis which is
thus considered to be circular.

2.4

2)

)

Fig. 2

It is convenient to introduce a discrete description, expanding &, §, and o in Fourier series of the
form

e(0 1) = 8o (1) + 2 [enc (¥) cOS 1+ &, () sinnp]. (1.3) -

n=1

We shall take the perturbations of the filament to be smooth, i.e., such that the digplacement £
satisfies the inequality

R <1, - (1.4)
where k =n/b is the wave number of a given perturbation. Since ¢ ~ be, bé, aw, (1.4) may be written in the
form

a
NEnc () Mne (9 n—b—o‘nc(s)<1' (1.5)

Conditions (1.5) for € and 6 are more restrictive than (1.1) and mean that the higher harmonics in
expansions of type (1.3) have a vanishingly small weight. We shall also assume that kinks in the filament
are "overdeveloped," i.e., £ > a, or what is the same, &, 6 > a/b. Thus in the case under consideration the
kinks must satisfy the following inequalities

ka << kE << 10 (1.6)
We note that in the ordinary magnetohydrodynamic approach kéi < ka, while ka can be arbitrary.

Under the assumptions made above, the kinetic and internal energies are defined [1] by the expres-
sion

T= —l— Mb? {(—Z—)Z a0+ 2 (80 + 87) + él[-n—i- (0 + dty'8n) - ( 1+ —,1‘2-) 8, + 6;?]} : .8

U = U® — pV @ [{20 + &+ 2ae + a® o (8" + 82> —a (200 1-89)°] (1.8)
Here
Oy 2 = O o g ®y Gy, = Ong Ene ~+ Ging Eng o

an'2 and dn'z have a structure similar to ahz; M is the mass of the ring; p, is the equilibrium gas pressure;
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v is the adiabatic exponent; certain equilibrium quantities are denoted by the superscript (0), a dot in the
prime position denotes differentiation with respect to time, the prime denotes differentiation with respect
to ¢, while angle brackets denote an average with respect to ¢;

o)y = 5 (@) de .

The functions T and U are obtained on the assumption that conditions are globally adiabatic, i.e.,
when the gas pressure is related to the total volume of the ring by the adiabatic equation.

2. Let us now find the magnetic self-energy Wy, of the ring. It was shown in {2] that in the "local-
cylinder" approximation, when the filament can be considered cylindrical over sections small compared
with the wavelength of the perturbation, and the external field varies by only a small amount over a dis-
tance on the order of the radius a of the filament, the magnetic self-energy is

((Do — cD ¥ dl

e (Diz .
W, = t o S [(BS.x)?.— 2B%] dV+§R-S_S~ ; 2.1)

Here ¢, and & are the total magnetic field flux through the ring, and the flux of field passing through
the transverse cross section of the filament and frozen into the plasma (@s the result of ideal conductivity
these fluxes are conserved), € is the flux of external field B® passing through the perturbed ring, L is the
self-induction coefficient of the ring for the longitudinal current, T is a unit vector tangential to the axial
line of the filament, and S is the area of transverse cross section.

n the case under consideration the components of the external magnetic field B® in the neighborhood
of the ring in equilibrium can be expressed in the following form with an aceuracy to quadratic terms in z
and r —b:

B =1G(t),  Bf=-2B.(t), Bi=By(t)+(r—bG ()
(2.2)
(G =Gy + Gy = (9B, ] Or)y=p, 1=0) +

Here Be and Bp are the values of the longitudinal and transverse fields on the circle r =b, z = 0; Gy
and Gq are the gradients of the basic and stabilizing transverse fields in the neighborhood of the equilib-
rium filament.

We assume that By, Gp, and the longitudinal current I, induced in the ring by the basic transverse
field, are functions of time as f({t) = f; + f,cos wt, while for the case in which both components are nonzero
they are associated by the relation

I/ Iy = By [ By = Gp1 [ Gyo s 2.3)
This condition allows the equations of motions of the ring to be considerably simplified.

We omit the cumbersome intermediate calculations and give the final expression for the magnetic
self-energy Wm of the ring, obtained from formula (2.1), taking (1.2), (2.2), (2.3), and the expression for
L found in [1] into account

Wm = Wm(o) "['“ Ve {2 (pa + pe pz) e + [(K - 2) Po— Pe + pi] &y

- w“tﬁ:‘——) Pa%€o "“ Pa% + N (pe +- 3p1. - pa) <d'2>
A R et 4 [ (LK) po+ 2<% + 2 (o pe — pi)as)

o]

(2.4)

— 5P n A — g (1)) £, (A — g, (n)) 8,21,

n=1

g Bpe +1pICE £ 8 + LG (L) et — ot — BFe [ ey g+ K) - <ads |}
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Here

Pe=B./8% pi=DB¢/8n (B;=®;/na®), po=B>?/8n (B, =219 ca)

K=14bB,JaB,—1, 1=2(A—2), A=In(8h/a) 2.5

n

Iy 1 1 1 3 2 1
gr(n)=2(1—m)2m+7—ﬁ, gz(n)=2<i-m)22i—_1+.—2—.

i=1 i=1

We note that in view of (2.3), the parameter K defined by equations (2.5) is constant, The ratio Bp/Bg,
is taken to be positive when the directions of the fields By, and B, are the same on the outer side of the
ring.

In deriving (2.4) it was assumed that B, > By, aG. A stricter treatment (compared with the local-
cylinder approximation assumed here) leads to relatively small corrections on the order a/b in the ex-
pression for Wm.

In accordance with (0.1)~(0.3) the magnetic energy Wy, of (2.4), together with the expressions for T
from (1.7) and U from (1.8), gives the generalized potential energy W and the Routh function R of the per-
turbed plasma ring.

When the constant terms in the coefficients for «; and g, in the potential energy W =U + Wy, are set
equal to zero, we obtain the equilibrium equations of the ring with respect to its smaller and larger radii.

Pat Pe—Pi—po=0,  (K—2)Bg— P+ pi— po=0. (2.6
Here and in what follows an overscore above a symbol denotes an average with respect to time.

Strictly speaking, in the case of high~frequency fields when the radii of the ring perform forced oscilla-
tions, Egs. (2.6) express the fact that these oscillations occur around the values a and b respectively.

3. The results obtained above. enable us, in principle, to investigate equilibrium and stability of a
plasma ring for various stabilization regimes employing quadrupole and longitudinal fields. However,
because of the coupling between the separate perturbation modes a strict analytic investigation of stability
is a rather complicated problem.

The situation is considerably simplified in the limiting case of an infinite straight filament; in parti-
cular, the coupling between hosepipe and constrictive perturbations disappears. The results of investigating
the stabilityof a straight filament should also be applicable to an annular filament which is not heavily
toroidal, at least for perturbations with n > 1,

To make the limiting transition to a straight filament we set x =beg, z =bd, p = aw, and we let b and
n tend to infinity while keeping the ratio n/b = « finite. We obtain the following expressions for the in-
stantaneous kinetic T; and potential W, energies:

» . 2 .
T = —%—nazcso {—;— Po? + 2o+ 2%+ 20 [2(—2’;—)2- —1——;— (22 + 24 2)]} 3.1)
. ke
Wi=Wi® + 0{2(pcw =+ Pew) aPo + 27P0 Po* + (Pe + 3ps — Pa— Po) P?

1 .2 1
+ _2' 2 (ka)2 ':pe ',_ Py — Pei 'B_ka— ‘{,—' T(pam + pem)} (-Tk2 + zkz)
k0
 aG4B B. B,
+a—[‘fﬁi<x2— 22>+—-4T2 ka (xys 25 — Ty 25 )} 3.2)
. k520
Here p, x and z are expanded in series of the form of (1.3), in which ky appears in place of ng. Here
y is the coordinate measured along the axis of the unperturbed filament, o, is the equilibrium density of
the plasma, In 8 = 0.577 is Euler's constant, and the subscript w denotes the high-frequency components

of the corresponding quantities.

We shall treat the stability of the filament relative to kink perturbations in greater detail. The
_ kinetic energy (3.1) for kinks assumes the form

o e, 0.9
k0
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It is convenient to represent the increment W1(1) in potential energy (3.2) in the form

W® = 51 TPq 21 [Ci (@ + 22 + Do (2 — 23) + 2Dy (2geZpe — TpeZps)l, (3 4)
s :

Here

Cy == (ka)? [pe* + pi* — po* In (2/Bka) + Yz (Paw™ 4 peo™)]
Dy = aG B /4np,, D, = kaB B, j4np,

where the asterisk denotes ratios of the corresponding quantities with respect to Ea- In what follows the
subscript k will be omitted where this does not complicate the issue.

We now pass to the new coordinates u and v defined by the formulas

szkc = Uge —l_ Ukss szkc = Upe + Uys

Vg =ty —Vrey V25 = Ups — e

In this case

N 1
T, = jna’s, 2 (uy® + v3%)

s (3 5)
Wi = %ﬂ?’a D Ck (g 4 v32) + Do (1 — v3%) + 2D (ygVgc — UpeVs)] (3.6)
;20
(uk‘l_—_ukz—}— u,?s, vkﬁ_-:v,?c-l—vkz).

Comparing equations (3.3) and (3.4) on the one hand and (3.5) and (3.6) on the other hand we note
that for a system with a single quadrupole field the normal oscillations are flat coils in the xz plane when
De = 0, while for a system with a single longitudinal field the normal oscillations are in u and v when Dy =
0. It can easily be shown that the latter are three-dimensional helixes corresponding to perturbations with
an azimuthal wave number m =+1 in the ordinary magnetohydrodynamic approach.

The formal similarity of expressions (3.4) and (3.6) for Wi(i) is an indication of the specific gimi~
larity which exists between the two types of stabilization considered, one using a quadrupole field and the
other a longitudinal field. However, the difference in the coefficients does not allow the results of investi-
gating one type of stabilization to be transferred directly to the other.

The equations of motion in both particular cases in which there is either only a quadrupole or only a
longitudinal field can be written in the form

E+@(C£DE=0 (@ = 2pa ] a%sy). B3N

Here  is some characteristic frequency of the system; the plus sign is for the z and y coordinates
and the minus sign is for the x and u coordinates.

In the case of constant fields the condition for the solution of Eq. (3.7) to be stable is clearly C - D >
0, It immediately follows from this that a filament with a constant current is unstable in the absence of a
stabilizing field,

In fact D =0 in this case, and C = —(ka)zln(Z/Bka) < 0 for sufficiently long wave perturbations. A
constant quadrupole field does not stabilize the filament (in the approximation assumed here it does not
even appear in the expression for the coefficient C). At the same time a large constant longitudinal field
can ensure stability; taking Be = Bj » Bg we arrive at the familiar Shafranov~-Kruskal criterion

B,> B.] ka. (3 8)

If the current in the filament or the external field changes with a high frequency, the possibilities of
stabilization are considerably greater, stabilization by means of a quadrupole field turns out to be possible,
and criterion (3.8) can be relaxed considerably in the case of a longitudinal field.
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Different variants of dynamic stabilization of a fine filament, with a quadrupole field, are treated in
[1.3]. The problem of the dynamic stabilization of a thin plasma filament by a longitudinal magnetic field
is solved in a similar manner with the help of the equations given above. The results thus obtained ac-
tually coincide with those obtained by the ordinary magnetohydrodynamic method in papers [4,5]. The the-
ory developed above enables us to investigate the general case also, when both stabilizing fields, a longi-
tudinal and a quadrupole, are present. An investigation of this type is carried out in the next section for
one of the variants of combined dynamic stabilization, when a high-frequency current is excited in the fila-
ment and the stabilizing fields are constant,

4 It is well known (see, for example, [1, 3-5]) that long-wave kinks in a current-carrying plasma fila-
ment are better stabilized by a quadrupole magnetic field, while short-wave kinks are better stabilized by
a longitudinal field.

It is natural to assume that by combining a quadrupole field with a longitudinal field, we should be
able to extend the range of perturbations which can be stabilized, or alternatively decrease the strength
of the stabilizing fields, The most convenient system is one in which a filament with an alternating cur-
rent 1) = I,cos wt is stabilized by constant quadrupole and longitudinal fields. We then have for the coeffi~
cients of the potential energy

C = C[,' + Cy c0520t, Dg = Dqycos 0, Dg= D, cosS0E

where Cg, Cy, Dqy and Deg; are constants, When Dq and De are harmonic functions of time, the coordinates
x and z (or u andv) appear entirely symmetrically in the expression for W( ) as well as in the expres-
sion for T,. It is well known (see, for example, [6]) that in this case the system exhibits so called "differ-
ence" resonance of coupling. in which energy is pumped from one partial oscillation to another, while the
total energy remains constant, and consequently the amplitude of each oscillation cannot increase without
limit. Thus coupling in this case does not destroy the stability of the system if the filament is stable with
one of the stabilizing fields; it remains stable on the introduction of the other field This means that the
stability criteria obtained for a filament with an alternating current in quadrupole [3] and longitudinal [5]
fields are also sufficient stability conditions in the general case of combined stabilization.

Allowing for both stabilizing fields simultaneously should, clearly lead to a less restrictive stabil-
ity criterion than in [3] or [5]. It is, however, exceedingly difficult to carry out this calculation exactly by
investigating a system of coupled equations with periodic coefficients. Keeping in mind what has been al-
ready said, we shall confine ourselves to considering motion averaged over the rapid oscillations, assum-
ing that the frequency w is much greater than the characteristic frequency of oscillation or the instability
increment of the system in the absence of oscillation.

The effective potential energy of average motion is defined [7] by the equation

e!f“—W'l"lZ 2 %ﬁ'
j ik k

Here Wjy, is the component of potential energy; oscillating with frequency wj ~aik~1 are elements of
a matrix which is the inverse of the matrix of the coefficients in the kinetic energy of this system. In the
present case we obtain, after some calculations,

2 4 4 \2
WA = 5 B D ka)*  pa* + pi* — In —g [+ p g e (1 — [T 2 @ D)

k70

where v = w/Q, and Pq = (an)z/S’lr. An important characteristic of expression (4.1) is the absence of cross
terms. This means that in smooth motion the separate harmonics in the perturbation are not coupled to
each other, i.e., they are normal modes of the system.

The condition for the method of averaging to be applicable has the form

P 2 . '
Vi3> (ka)?| p* + pi* —1n Bl Pt 4.2)

26



If, taking (4.2) into account, we neglect the last term in brackets in {4.1) the stability criterion for a
filament relative to kinks can be written in the form

pe(ka)® + (4 4 Yav?) pe* + Yavipi* > Yeov?In(2/Bka) « 4.3)

Setting pq* = 0 or pg* = 0 we obtain the stability conditions for a filament in the particular casesin
which there is only a longitudinal or only a quadrupole stabilizing field.

Figures 1 and 2 illustrate criterion (4.3) for Bg = Bj and v = 2, satisfying condition (4.2). As is to be
expected, the introduction of a longitudinal field allows the quadrupoie field to be decreased (or more
exactly, its gradient). The greater ka, i.e., the smaller the wavelength of the perturbation (Fig. 1), the
more it can be decreased. On the other hand, a quadrupole field allows the longitudinal field to be de-
creased. The smaller kg, i.e., the larger the wavelength of the perturbation, the more it can be decreased
(Fig. 2).

As the parameter v increases, the stabilizing fields also increase as can be seen from (4.3). The
quadrupole field increases much more rapidly than the longitudinal field.

We shall now briefly dwell on the stability of the filament relative to constrictive-type perturbations.
It can easily be seen that formally the same equations are obtained for perturbations of this type as in [3]
for the case Bg = 0. If ¥ > 1, the stability condition for the constrictions themselves (k = 0) virtually coin-
cides with the well-known criterion for the stabilization of a frozen-in magnetic field

¥ >Ys (4.4)

When (4.4) is satisfied, oscillations of the filament radius also turn out to be stable if we take into
account the bandwidths of parametric resonance which are still narrower than those in [3]. The narrowing
of the resonance regions comes about as the result of an increase in the rigidity of the system because of
the constant external magnetic field Bg.

If the relative "cost" of quadrupole and longitudinal fields is known, by using diagrams similar to
those given in Figs. 1 and 2 and taking criterion (4.4) into account, we can select the optimum operating
regime for the system.

In conclusion the author wishes to thank M. L. Levin for useful discussions and advice.
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